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a b s t r a c t

Graph neural networks (GNNs) have witnessed an unprecedented proliferation in tackling several prob-
lems in computer vision, computer-aided diagnosis and related fields. While prior studies have focused
on boosting the model accuracy, quantifying the reproducibility of the most discriminative features
identified by GNNs is still an intact problem that yields concerns about their reliability in clinical
applications in particular. Specifically, the reproducibility of biological markers across clinical datasets
and distribution shifts across classes (e.g., healthy and disordered brains) is of paramount importance
in revealing the underpinning mechanisms of diseases as well as propelling the development of
personalized treatment. Motivated by these issues, we propose, for the first time, reproducibility-based
GNN selection (RG-Select), a framework for GNN reproducibility assessment via the quantification of
the most discriminative features (i.e., biomarkers) shared between different models. To ascertain the
soundness of our framework, the reproducibility assessment embraces variations of different factors
such as training strategies and data perturbations. Despite these challenges, our framework successfully
yielded replicable conclusions across different training strategies and various clinical datasets. Our
findings could thus pave the way for the development of biomarker trustworthiness and reliability
assessment methods for computer-aided diagnosis and prognosis tasks. RG-Select code is available on
GitHub at https://github.com/basiralab/RG-Select.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

The scope of deep learning (DL) application in neuroscience
s marking an exponential growth in many directions thanks to
ts proven efficiency in tackling many problems such as classi-
ication (Richards et al., 2019) or regression (Smith, Ganesh, &
iu, 2013). The abundance of non-invasive neuroimaging datasets
cquired from different modalities (e.g., structural and functional
RI) and the availability of new computational frameworks are

∗ Corresponding author at: BASIRA lab, Faculty of Computer and Informatics
ngineering, Istanbul Technical University, Istanbul, Turkey.

E-mail address: irekik@itu.edu.tr (I. Rekik).
1 http://basira-lab.com/.
2 Data used in preparation of this article were obtained from the Alzheimer’s
isease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). As
uch, the investigators within the ADNI contributed to the design and
mplementation of ADNI and/or provided data but did not participate in
nalysis or writing of this report. A complete listing of ADNI investiga-
ors can be found at: http://adni.loni.usc.edu/wp-content/uploads/howtoapply/
DNIAcknowledgementList.pdf.
ttps://doi.org/10.1016/j.neunet.2022.01.018
893-6080/© 2022 Elsevier Ltd. All rights reserved.
indubitably pushing the boundaries of research towards deepen-
ing our understanding of brain connectivity (Bassett & Sporns,
2017). In network neuroscience, in particular, the graph structure
is considered as a powerful data representation thanks to its
capacity in encoding connections between different brain re-
gions (delEtoile & Adeli, 2017; Farahani, Karwowski, & Lighthall,
2019; He & Evans, 2010; van den Heuvel & Sporns, 2019). In
fact, a brain connectome is a map of connections in the brain
wiring different anatomical regions of interest (ROIs), providing
a comprehensive map of the network structure of the brain.
Thus, it helps better understand the anatomically based interac-
tions between different ROIs (Toga, Clark, Thompson, Shattuck, &
Van Horn, 2012) in a non-invasive manner. A brain connectome
can be modeled as a graph where each node denotes an ROI and
an edge connects two ROIs quantifying their interaction. Applying
traditional DL frameworks to graphs does not lead to satisfac-
tory results due to their incapacity in exploiting the topological
properties of such non-Euclidian data (Bronstein, Bruna, LeCun,
Szlam, & Vandergheynst, 2017; Henaff, Bruna, & LeCun, 2015).
To mitigate this limitation, graph neural networks (GNNs), an
extended family of DL methods dealing with non-Euclidian data,
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ave been proposed as an alternative to traditional DL algorithms
n many fields (Monti et al., 2017; Wang et al., 2019; Zhang, Cui, &
hu, 2020) including the field of network neuroscience (Bessadok,
ahjoub, & Rekik, 2021; Wang, Sapra, George and Silva, 2021).
NNs have demonstrated a promising potential in capturing the
opological features of graphs to perform a given task such as
lassification or regression (Wu et al., 2020; Xu, Hu, Leskovec, &
egelka, 2018; Zhou et al., 2020).

Thus far, most DL and GNN classification models applied in
etwork neuroscience have focused on increasing the accuracy
n discriminating between two neurological states (e.g., healthy
nd neurologically disordered) (Alper, Bach, Henry Riche, Isen-
erg, & Fekete, 2013; Bessadok et al., 2021; Rashid et al., 2016;
hirer, Ryali, Rykhlevskaia, Menon, & Greicius, 2012). Notably,
nstead of evaluating the efficiency in discriminating between
wo classes, GNNs can be evaluated in their capacity to reproduce
he most reliable set of discriminative ROIs in a given learning
ask. Specifically, if two models have consensus over the most
mportant features/biomarkers, this shows that those features are
eproducible across models. Hence, since different models end
p finding the same top discriminative features, this shows that
uch models are reproducible. Adding to that, we evaluate if such
onsensus holds up when we change the training and testing data
istributions using various cross-validation strategies. The ability
f a particular GNN model to consistently reproduce the same
op features in concordance with the majority of other models
cross various cross-validation strategies demonstrates the high
eproducibility of such a model. Hence the most reproducible
odel acts as a central node in the GNN-to-GNN reproducibility
atrix (Fig. 2). However, accuracy-based GNN comparison, which

ocuses only on the end classification results, overlooks the actual
iomarker reliability (i.e., the neuroscientific meaning behind
he identified biomarkers). Yet, unlike the accuracy-based GNN
ssessment, under the reproducibility definition, a reproducible
iomarker can be reliably investigated in clinical treatments,
here patients with the same brain disorder show a higher
isease–biomarker overlap (Povero et al., 2020) (e.g., decreased
ortical thickness in Alzheimer patients).
Although being subject to confusion with ‘‘interpretability/

xplainability’’, ‘‘reproducibility’’ has been suggested to investi-
ate the model’s ability in reproducing the same most discrimi-
ative features (e.g., biomarkers) between two classes across data
istribution perturbations (Georges, Mhiri, & Rekik, 2020). While
‘interpretability’’ focuses on debunking how different layers and
eights contribute to GNN’s decision making (i.e., classification,
egmentation) (Li et al., 2021), ‘‘reproducibility’’ studies evaluate
he ability of a given GNN in producing and reproducing con-
istent findings across multiple data perturbations. Here, we are
nterested in the latter goal with the aim to study and quantify a
iven GNN’s reproducibility. Specifically, in our case, the predic-
ions made by GNNs are learned by identifying the different brain
onnectivity alterations between brain regions that mark a partic-
lar disorder. To deepen our understanding of brain connectivity,
uantifying the reproducibility of GNNs in terms of biomarkers
ecomes crucial to investigate their reliability more rigorously.
n this context, the reproducibility of a model can be looked at
s how likely it is congruent with other models. Specifically, here
e define the reproducibility score of a given GNN model based
n the intersection of its most relevant features with feature sets
dentified by other GNN models. As such, a GNN’s reproducibility
ssessment has to be generalized across various perturbations of
he training and testing data distributions.

A few studies have been proposed to tackle the problem of
iomarker or feature reproducibility. Jin et al. (2020) worked on
eproducibility across datasets collected from different sites to

valuate the generalizability of a given model. Du et al. (2020)
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investigated the reproducibility of biomarkers across datasets to
extract the most reproducible brain alterations responsible for a
neurological abnormality. Although they have generated robust
conclusions, such methods do not study the reproducibility across
brain connectivity multigraph datasets (i.e., graphs with different
connectivity measures for the same pair of nodes). Another line
of works has focused on reproducibility across models (Georges
et al., 2020). This approach reflects more consistency since it
considers multiple models at once and takes into considera-
tion datasets containing brain multigraphs (Dhifallah & Rekik,
2020; Lisowska & Rekik, 2017; Mahjoub, Mahjoub, & Rekik, 2018).
However, the proposed framework in Georges et al. (2020) fo-
cused only on traditional feature selection (FS) methods and
cannot be applied directly to GNNs due to their complexity. In
fact, extracting the top biomarkers in FS methods is inherently
straightforward, unlike other frameworks. Most GNNs include
graph embeddings or graph reshaping operations which alter the
original dimensions in the input space (Bessadok et al., 2021).
To overcome these limitations, in analogy with reproducibility
of FS methods where the most discriminative features from the
input space are selected, we can look at the weights learned in
a deep learning model as an indicator of the discriminativeness
for biomarkers (i.e., sample features in general). For this purpose,
we extract the weights of a given GNN model in its last layer
preserving the original graph dimensions. Consequently, we build
a feature map for each GNN characterizing the discriminativeness
assigned to the neurological biomarkers, which denote brain ROIs
in our case. This choice is also justified by the fact that the
last layer can be looked at as a weighted combination of all
the previous neurons in a given neural network. Consequently,
we analyze the intersection of the different GNN specific feature
maps using different strategies with the aim of selecting the most
reproducible GNN as illustrated in Fig. 1.

Throughout this paper, we use the term ‘‘reproducibility’’ to
describe how well a GNN can reproduce the same findings given
several perturbation techniques. More importantly, in this study,
we propose the concept of reproducibility as a criterion for best
GNN model selection. Notably, the feature map of weights re-
spective to biomarkers reflects the importance accorded by a
given GNN projected in the input domain. By conceptualizing
the reproducibility in feature selection case as the consensus in
terms of selected biomarkers across different models, we can
extend this approach to the GNN models by regarding the learned
weights as an importance factor. We can then pick the top-
weighted biomarkers to investigate the overlap across GNNs from
different angles. To ensure generalizability, our study implicates
variations in multiple factors such as brain connectivity measures,
training data distribution perturbation strategies and the number
of top biomarkers to be considered for a given dataset of two
different neurological states (e.g., healthy vs. disordered). De-
pending on these factors, we target GNN reproducibility by using
different techniques with the aim of establishing a generalizable
and trustworthy clinical interpretation.

In view of these aims, we propose reproducibility based GNN
selection (RG-Select),3 a novel framework that investigates the
reproducibility of GNN classifiers in datasets of brain connectivity
multigraphs, where two nodes are connected by multiple edges,
each capturing a particular facet of the brain interactivity. Specif-
ically, we aim to rigorously assess our framework with different
settings in order to provide generalizable results. In this context,
our study incorporates the variations of the following factors: (1)
GNNs, (2) brain connectivity measures per dataset, (3) training
strategies, (4) number of top biomarkers to be selected, and (5)
connectivity measures (e.g., cortical thickness and sulcal depth).

3 https://github.com/basiralab/RG-Select.

https://github.com/basiralab/RG-Select
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Fig. 1. Proposed reproducibility-based model selection. (A) A model selection based on the ability of the model to reproduce biomarkers using a single view data
et. (B) Model selection based on the ability of the model to reproduce biomarkers given multi-view dataset.
aking into account those factors and given a pool of GNN models
nd a particular dataset of interest, our RG-Select identifies the
ost reproducible GNN model.

. Proposed reproducibility based graph neural network selec-
ion (RG-Select)

In this section, we present in detail the proposed frame-
ork RG-Select for quantifying the reproducibility of GNNs as

llustrated in Fig. 2. First, we construct single view datasets by
eparating the views in each multigraph. We train a set of GNNs
n each dataset, separately. Following training, we extract a set
f top discriminative biomarkers (i.e., ROIs) based on the ranking
f their respective learned weights. In detail, we extract sets
f top biomarkers with different sizes for generalizability pur-
ose. Finally, we assign scores to each pair of models based on
he inter-model discriminative biomarker overlap. Inter-model
eproducibility scores will be used eventually to build the over-
ll reproducibility matrix which incorporates variations of the
ifferent factors.

.1. Problem statement

We denote D = (G,Y) as the dataset containing brain con-
ectivity multigraphs with a set of classes respective to different
rain neurological states to classify. Let G = {G1,G2, . . . ,Gn}

nd Y = {y1, y2, . . . , yn} denote the set of the brain connectiv-
ty multigraphs and their labels, respectively. Each connectivity
ultigraph Gi is obtained by stacking (i.e., concatenating) a set
f nv views (also referred to as edge types). Each view is a single
onnectivity matrix representing a distinct cortical measurement
e.g., cortical thickness). We formulate a view as Xj

i ∈ Rnr×nr ,
here j ∈ {1, . . . , nv} is the view index in the multigraph. As
uch, a brain connectivity multigraph can be represented as a
ensor Xi ∈ Rnr×nr×nv and a label yi ∈ {0, 1}.

Let Dj
= (Gj,Y) be the dataset constructed from the jth

iew. Given a pool of nm GNNs {GNN1,GNN2, . . .GNNnm}, we are
nterested in training a GNN model GNN i : G → Y on the separate
ingle view dataset {Dj

}
nv
j=1. We aim to identify the best GNN

that reproduces the same biomarkers differentiating between two
256
brain states against different data perturbation strategies. Thus,
we extract the weight vector wi ∈ Rnr learned by the ith GNN
model, where i ∈ {1, 2, . . . , nm} in each experiment. For a given
dataset, we extract the weights for all the views and GNNs. Next,
we rank the biomarkers based on the absolute value of their
respective weights. Finally, we compute the reproducibility scores
as detailed in what follows.

2.2. Model selection and evaluation

Consistent with previous machine learning practices, we con-
ducted separate model selection and evaluation steps to ensure
fairness in the assessment of the models following the protocol
detailed in Errica, Podda, Bacciu, and Micheli (2019). To do so, we
partition our training set into an inner training set and holdout
subset. Next, we train the GNN on the inner training set and
validate it on the holdout subset for the model selection. The
model selection aims to tune the hyperparameters based on the
performance on the validation set. Next, we select the optimal
hyperparameters combination that brought the best results on
the validation set. We then use the optimal hyperparameters in
the model evaluation step where each model is assessed on a sep-
arate test set depending on the different k-fold cross-validation
(CV). k-fold CV consists of k different training/test splits used
to evaluate the performance of the model. In each iteration, the
model is tested on a subset of samples never used in the model
selection step where the model is trained. We also ensure label
stratification in the different data partitions so that the class
proportions are preserved across all the training/test/validation
splits. This protocol is motivated by the fact that there are some
issues about the separation between model selection and assess-
ment in different state-of-the-art GNN official implementations
leading to unfair and biased comparisons (Errica et al., 2019).

2.3. GNN training modes

We used different modes of training for our GNNs to en-
sure the generalizability of the results. We conducted resource-
ful training which is based on the conventional k-fold cross-
validation protocol. It trains the models on the training set fol-
lowing the same fairness diagram detailed in Errica et al. (2019).
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Fig. 2. Illustration of the proposed framework for GNN reproducibility assessment. (A) We start with datasets of single-view graphs. (B) We train different GNN
models on the datasets. For each model-dataset combination, we extract the biomarkers absolute value weights vector. Then, we rank the resulting vectors to identify
the top discriminative brain regions. (C.1) We calculate the overlap ratio between resulting vectors from different GNNs and the same view. For each view, we build
a reproducibility matrix. (C.2) We compute the overlap ratio between resulting vectors from different views and the same GNN. Consequently, we obtain a matrix
for each GNN. Next, we extract ranking vectors based on the node strength vectors resulting from these matrices. This step results in a ranking vector for each
GNN. (D.1) We compute the average of the resulting matrices to obtain the overall reproducibility matrix. (D.2) We calculate the correlation between pairs of GNN
resulting ranking vectors.
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Moreover, we used frugal training which follows a few-shot
learning approach. This mode performs the model training on
only a few samples and the evaluation on all the remaining
subjects in the dataset. Using both methods is important to
ensure that the results of our framework are agnostic to data
perturbations and training strategies.

2.4. Biomarker selection

In contrast with the conventional approach which focuses on
ccuracy evaluation of a given classifier, here, we focus on model
eproducibility in top discriminative features (i.e., biomarkers).
ypically, the extraction of the most discriminative biomark-
rs for FS methods is straightforward. However, GNN methods
ave different architectures which makes it hard to implement
generalized way to extract the most important biomarkers. To
ircumvent this issue, we extract the weights of the last layer
reserving the dimensionality of the input data (i.e., having the
ame number of features/ROIs). Specifically, given nr ROIs for
ach brain connectome, we rank these biomarkers based on their
earned weights by the selected GNN. Based on that ranking, we
xtract rKhi,j ∈ RKh the vector containing the top Kh biomarkers
ased on the weights learned by the ith GNN trained on the jth

view of the input multigraph dataset.

Definition 1. Let rki,v, r
k
j,v ∈ Rnr denote two the vectors containing

the top k biomarkers learned on the same view v by GNNi and
NNj, respectively. We denote rki,v and rkj,v as the two sets con-

taining the regions included in rki,v, r
k
j,v , respectively. We define

the view-specific reproducibility on the view v at threshold k

between models i and j as: pv (rki,v, r
k
j,v) =

|rki,v∩rkj,v |

k

efinition 2. Let rkg,i, r
k
g,j ∈ Rnr denote two the vectors containing

the top k biomarkers learned by the same GNN on the views i
g

257
and j, respectively. We denote rkg,i and rkg,j as the two sets con-
taining the regions included in rkg,i, r

k
g,j, respectively. We define

the GNN-specific reproducibility by GNNg at threshold k between

views i and j as: pg (rkg,i, r
k
g,j) =

|rkg,i∩rkg,j|

k

2.5. View-specific reproducibility matrix

For a pool containing nm GNNs, we aim to quantify the re-
roducibility between each pair of models. Since reproducibility
eflects the commonalities between two sets of biomarkers, we
ropose to compute the ratio of the overlapping ROIs. First, we
eed to quantify the reproducibilities in the same domain (i.e., the
ame view). In other terms, for a given view v and a threshold Kh

e calculate the ratio pv(r
Kh
i,v , r

Kh
j,v ) for each pair of models GNN i

nd GNN j. Having the reproducibility calculated for each pair of
NNs, we construct the reproducibility matrix RKh

v ∈ Rnm×nm

here RKh
v (i, j) = pv(r

Kh
i,v r

Kh
j,v ). Next, we generate the average

eproducibility matrix by merging all the reproducibility matrices

cross the different p thresholds Rv(i, j) =

∑nk
h=1 RKh

v (i,j)
nk

, where nk
is the number of threshold values. Finally, after calculating the
reproducibility locally (i.e., for each view) we need to get a gen-
eral overview of the reproducibility across all views. Therefore,
we average the resulting matrix over all the views and training
modes (i.e., perturbation strategy).

2.6. GNN-specific reproducibility matrix

Another way to quantify reproducibility is to start from quan-
tifying the commonalities across views for the same GNN. This
is motivated by the fact that GNNs might have varying behav-
iors (i.e., different learned weight distributions) across different
data views. For the same model, we measure the GNN-specific
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eproducibility between the different views of the dataset (see
ection 3.4.2). For a given GNNg , we construct the matrix RKh

g ∈

Rnv×nv where RKh
g (i, j) = pg (r

Kh
g,i, r

Kh
g,j). Then, we average over the

thresholds, Rg (i, j) =

∑nk
h=1 RKh

g (i,j)
nk

. Finally, we calculate the average

f the GNN-specific reproducibility matrix for each model across
ll the different training modes.

. Results

.1. Evaluation datasets

We evaluated our reproducibility framework on a small-scale
nd a large-scale brain connectivity datasets. The first dataset
AD/LMCI) contains 77 subjects (41 subjects are diagnosed with
lzheimer’s diseases (AD) (average age 70.4 ± 7.5) and 36 diag-
osed with Late Mild Cognitive Impairment (LMCI) (average age
4.1±6.7)) from the Alzheimer’s Disease Neuroimaging Initiative
ADNI) database GO public dataset) (Weiner et al., 2010). The
econd dataset (ASD/NC) includes 300 subjects (all under 15 years
ld) equally partitioned between autism spectral disorder (ASD),
nd normal control (NC) states extracted from Autism Brain Imag-
ng Data Exchange ABIDE I public dataset (Di Martino et al.,
014).
For both datasets, the connectivities (i.e., views or measure-

ents) were obtained using FreeSurfer (Fischl, 2012) by con-
tructing cortical morphological networks for each subject from
tructural T1-w MRI (Dhifallah & Rekik, 2020; Mahjoub et al.,
018). Next, both left and right cortical hemispheres (LH and
H) are parcellated into 35 cortical ROIs using Desikan–Killiany
ortical atlas, respectively (Desikan et al., 2006; Lisowska & Rekik,
017). Both AD/LMCI (RH and LH) brain multigraphs are con-
tructed using 4 cortical measures: maximum principal curva-
ure, cortical thickness, sulcal depth and average curvature. As
or the ASD/NC dataset, brain multigraphs are generated from
ix cortical attributes which are the same attributes used for
D/LMCI datasets in addition to cortical surface area and mini-
um principle area. Specifically, for each node ROI i and for each
ortical attribute, we calculate the average cortical measurement
ai across all its vertices. The weight of the connectivity linking
ROI i and ROI j is the absolute distance between their average
cortical attributes: |ai − aj|.

.2. GNN models

For our reproducibility framework, we used 5 state-of-the-art
NN architectures: DiffPool (Ying et al., 2018), GAT (Veličković
t al., 2017), GCN (Kipf & Welling, 2016), SAGPool (Lee, Lee, &
ang, 2019) and g-U-Nets (Gao & Ji, 2019). DiffPool performs a
ifferential pooling to generate a learned hierarchical represen-
ation of an input graph. At each pooling layer, DiffPool learns
ow to make soft assignment of nodes into clusters which will
e the nodes of the following layer (Ying et al., 2018). GAT and
CN are originally designed for node classification. Here, we
dapt them to perform the graph classification task. Therefore,
efore a final linear layer, we insert a global mean pooling layer
rojecting the node scores into a global score for the whole graph.
AT learns different weights to the neighborhood to perform
he aggregation in the following layer. GCN sequentially learns
onvolution weights that encode neighborhood features and local
raph structure (Kipf & Welling, 2016). SAGPool performs graph
onvolutions to learn pooling and unpooling of graphs based on
elf-attention (Lee et al., 2019). g-U-Nets is a U-shape based GNN
ombining multiple encoders and decoders that perform pooling
nd unpooling of the graph, respectively (Gao & Ji, 2019).
258
3.3. Training settings and hyperparameters

We have used two different types of training in our experi-
ments: resourceful and frugal. For the resourceful training, we
trained our models in the conventional train/test approach. To do
so, we have made 3-fold and 5-fold cross-validation strategies.
In addition to the resourceful training approach based on the k-
fold cross-validation, we also evaluated our experiments with a
frugal training approach based on few-shot learning. Here, we
only trained the model on 2 samples per class for each dataset.
To limit any major intervention of parameters/sample selection
with respect to our findings, we run our experiments for 100
times, each with different randomizations. We also used four
thresholds for the top biomarkers extraction, which are 5, 10, 15,
and 20. All the hyperparameters were selected using grid search.
For all models, the learning rates ranged between 0.0001 and
0.001. For DiffPool, the hidden dimension, the output dimension,
the assignment ratio and the number of convolution layers were
equal to 256, 512, 0.1 and 3, respectively. For GAT, the numbers
of hidden units and head attentions were equal to 8. For GCN, the
number of hidden units is equal to 64. For g-U-Nets, the number
of layers, hidden and convolution layer dimensions were equal to
3, 512 and 48, respectively. For SAGPool, the hidden dimension
and the pooling ratio were equal to 256 and 0.5, respectively.

3.4. Overall reproducibility matrices

3.4.1. View-specific matrix based reproducibility
To quantify the reproducibility across GNN models we used

4 different methods. The first method consists of calculating the
average between the view-specific reproducibility matrices over
all the views of the selected dataset. This method is intuitive in
order to combine the information calculated for each view.

3.4.2. GNN-specific matrix based reproducibility
We rank the views based on the GNN-specific reproducibility

matrix. For each GNN, we extract a vector indicating the ranks
of the views. Next, we calculate the correlation coefficient across
pairs of GNNs based on their respective reproducibility matrices.
Consequently, we construct a reproducibility matrix containing
pairwise relations between GNNs. This method is useful to reflect
how the GNN are likely to have the same behavior across views.

3.5. Most reproducible GNN selection

In what follows, we define the reproducibility matrix as the
summation of the two matrices detailed above. To take advan-
tage of both GNN-specific and view-specific matrices, we sum
the two reproducibility matrices detailed above. As such, we
can look at the overall reproducibility matrix as a graph where
the nodes represent the GNN models. Consequently, we use the
node strength to quantify the reproducibility scores of the GNN
models. This is conceptualized based on the intuition that the
model reproducibility reflects the consensus in biomarkers with
other models. Projecting this idea on the graph topology, node
strength is a topological measure that encodes the magnitude of
the connections with remaining entities in the graph. We define
the most reproducible model as the node having the highest
strength in the reproducibility graph.

For each neurological dataset, we trained GNN models using
two different training modes: CV and FS. For CV, we average
3-fold, 5-fold and 10-fold results. For FS, we average the 100
different randomizations that we have conducted to select the
few training samples. Figs. 3 and 4 illustrate the reproducibility
matrices for AD/LMCI RH and LH datasets, respectively. For these
datasets, the most reproducible GNNs are DiffPool and SAGPool,
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Fig. 3. Heatmaps of reproducibility matrices of AD/LMCI LH dataset. The matrices were computed on cross-validation and few-shot training strategies, separately. For
each heatmap, we associate a score vector where each value represents the average of its corresponding row (in the heatmap). AD: Alzheimer’s disease. LMCI: late
mild cognitive impairment. LH: left hemisphere. CV: cross-validation. FS: few-shot.

Fig. 4. Heatmaps of reproducibility matrices of AD/LMCI RH dataset. The matrices were computed on cross-validation and few-shot training strategies, separately. For
each heatmap, we associate a score vector where each value represents the average of its corresponding row (in the heatmap). AD: Alzheimer’s disease. LMCI: late
mild cognitive impairment. RH: right hemisphere. CV: cross-validation. FS: few-shot.

Fig. 5. Heatmaps of reproducibility matrices of ASD/NC LH dataset. The matrices were computed on cross-validation and few-shot training strategies, separately. For
each heatmap, we associate a score vector where each value represents the average of its corresponding row (in the heatmap). ASD: autism spectrum disorder. NC:
normal control. LH: left hemisphere. CV: cross-validation. FS: few-shot.
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Fig. 6. Heatmaps of reproducibility matrices of ASD/NC RH dataset. The matrices were computed on cross-validation and few-shot training strategies, separately. For
ach heatmap, we associate a score vector where each value represents the average of its corresponding row (in the heatmap). ASD: autism spectrum disorder. NC:
ormal control. RH: right hemisphere. CV: cross-validation. FS: few-shot.
espectively. We also note that the most reproducible method
s the same across training modes. Figs. 6 and 5 illustrate the
eproducibility matrices for ASD/NC datasets. Based on the overall
atrices, g-U-Nets and GAT are the most reproducible models
n LH and RH, respectively. For all datasets, the results show
hat the most reproducible model selection is generalized over
ifferent training modes. This emphasizes our framework’s ability
o assess reproducibility across different data distribution per-
urbation strategies. In addition, the model having the highest
ode strength might not be the same across reproducibility scores
correlation-based and average-based). This reflects that the GNN
election highly depends on the reproducibility score. However,
he summation of the resulting matrices gave consistent conclu-
ions regarding the most reproducible model selection. Once the
ost reproducible GNN model is selected, we extract its learned
eights as in Fig. 7. The most discriminative biomarkers will be

urther detailed in the discussion section.

. Discussion

To the best of our knowledge, here, we proposed the first
tudy to evaluate the reproducibility of GNN models. Our method,
G-Select, quantifies the reproducibility of a model based on
he consensus of its most discriminative biomarkers across other
odels in a given pool of GNNs. Based on the node strength
oncept from graph theory, our framework quantifies the re-
roducibility score of GNNs. In contrast with other methods,
G-Select is applicable to datasets of multigraphs which indi-
ates the challenging level of heterogeneity that can be handled
y our framework. This also reflects the generalizability of the
ettings that we considered in our framework to determine the
ost reproducible model. Our framework succeeded in produc-

ng replicable results across different training modes in all the
atasets. In more detail, for each dataset, the most reproducible
ethod was the same across different training settings. Conse-
uently, it identifies the most reproducible biomarkers as the
ost congruent features across models.

.1. Most reproducible biomarkers

Fig. 7 displays the absolute value of weights respective to
iomarkers learned by the most reproducible model for datasets
D/LMCI RH, AD/LMCI LH, ASD/NC RH and ASD/NC LH, respec-
ively. Our framework identified DiffPool as the most repro-
ucible method for AD/LMCI RH dataset as illustrated in Fig. 7.
260
Table 1
Average classification accuracy across views by different GNN models using 5-
fold cross-validation. ASD: autism spectrum disorder. NC: normal control. AD:
Alzheimer’s disease. LMCI: late mild cognitive impairment. LH: left hemisphere.
RH: right hemisphere.
Datasets ASD/NC AD/LMCI

LH RH LH RH

GCN (Kipf & Welling, 2016) 52.5 57.7 52.46 50.46
GAT (Veličković et al., 2017) 56.66 57.5 53.84 48.52
DiffPool (Ying et al., 2018) 53.3 54.17 59.84 47.53
g-U-Nets (Gao & Ji, 2019) 49.59 51.17 57.23 37.23
SAGPool (Lee et al., 2019) 52.16 52.58 53.50 55.10

The most discriminative ROIs are the lingual gyrus and perical-
carine cortex. Supporting our findings, Shi et al. (2020) found
that lingual gyrus plays an important role in the neuropatho-
physiology of depression in AD. Furthermore, Yang et al. (2019)
found that pericalcarine cortex was among the brain regions
which have a significant reduction in cortical thickness with
AD patients. For AD/LMCI LH dataset, SAGPool was selected as
the most reproducible model as illustrated in Fig. 3. The most
important biomarkers in this dataset as illustrated in 7 are insula
cortex and transverse temporal cortex. Lou et al. (2021) found
that the insula cortex has a significant variation in T1 values
with AD patients. In addition, Barnes et al. (1991) showed that
the density of the selective angiotensin converting enzyme in
temporal cortex is significantly higher with AD patients. For
ASD/NC RH dataset, GAT was the most reproducible model. Fol-
lowing the model training, the most two discriminative regions
were precentral gyrus and bank of the superior temporal sul-
cus. Nebel, Eloyan, Barber, and Mostofsky (2014) found that
the precentral gyrus is highly related to the severity of ASD
traits in brain connectivity network. Moreover, Zilbovicius et al.
(2006) stated different experiments showing abnormal or absent
superior temporal sulcus activation in patients with ASD during
tasks involving social cognition. For the ASD/NC LH dataset, g-
U-Nets was the most reproducible GNN model. The experiments
have shown that posterior-cingulate cortex and insula cortex are
the most discriminative biomarkers. Gogolla (2017) confirmed
that irregularities in insula cortex connectivities are linked to
autistic symptom severity. In addition, different studies showed
that Abnormalities in posterior-cingulate cortex responses during
interpersonal interaction highly correlate with the severity of
patients’ autistic symptoms (Chiu et al., 2008; Leech & Sharp,

2014).
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Fig. 7. The learned weights for the cortical regions of the brain by the most reproducible model using the four datasets. AD: Alzheimer’s disease. LMCI: late mild cognitive
mpairment. ASD: autism spectrum disorder. NC: normal control. RH: right hemisphere. LH: left hemisphere. CV: cross-validation. FS: few-shot.
.2. Reproducibility evaluation scores

Tables 2–5 contain all the reproducibility scores for all the
odels on each dataset. We denote the views average and rank
orrelation based reproducibility scores as v.a and r.c, respec-
ively. Here, we detail the other reproducibility scores not men-
ioned in the methods section. The first score is the strength
orrelation (s.c). We extract the node weights of the GNN-specific
eproducibility matrix for each model. Then, we compute their
verage over all the thresholds. The dimension of the resulting
ector is equal to nv . Finally, we calculate the correlation score
f each pair of GNN resulting vectors. The second score is the ac-
umulated weights correlation (a.w.c). instead of averaging over
he thresholds, here, we accumulate them within one vector. The
261
dimension of the resulting vector is nv ×nk. Next, for each pair of
GNNs, we compute the correlation score between their respective
resulting vectors. The third score is the accumulated weighted in-
tersection (a.w.i): We calculate the accumulated vectors for each
GNN. Next, we implement a weighted intersection of the resulting
vectors. The weighted intersection takes into consideration of
two vectors: accumulated strengths and accumulated rankings.
The accumulated strengths vector is the same as the previous
method. The accumulated ranking vector contains the rankings of
the views (e.g., node strengths of the GNN-specific reproducibility
graph). This vector mainly represents the similarities between
the strengths and weighted by the similarities in the rankings. In
other terms, it gives high scores to elements having close rankings
and close strengths. It would also penalize the pair of vectors
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Table 2
Reproducibility scores for AD/LMCI left hemisphere dataset using different GNN models. AD: Alzheimer’s disease. LMCI: late mild cognitive
impairment. CV: cross-validation. FS: few-shot. v.a: views average. r.c: rank correlation. a.w.i: accumulated weighted intersection.
a.w.c: accumulated weights correlation. s.c: strength correlation. a.r.i: accumulated rank intersection. KL: KL divergence. L2: L2
distance between vectors of scores.
Method Training v.a r.c a.w.i a.w.c s.c a.r.i KL L2

DiffPool (Ying et al., 2018) CV 0.354 0.283 0.314 0.264 0.238 0.255 1.575 2.624
FS 0.366 0.25 0.314 0.103 0.32 0.266 1.782 2.809

GAT (Veličković et al., 2017) CV 0.327 0.1 0.284 0.397 0.042 0.24 3.259 3.819
FS 0.334 0.1 0.247 0.422 −0.013 0.156 4.109 4.119

GCN (Kipf & Welling, 2016) CV 0.353 0.083 0.329 0.302 0.04 0.219 1.695 2.647
FS 0.303 −0.05 0.302 0.205 0.027 0.188 2.345 3.017

g-U-Nets (Gao & Ji, 2019) CV 0.373 −0.117 0.272 0.262 −0.008 0.286 2.728 3.45
FS 0.375 −0.7 0.253 0.223 −0.496 0.25 3.244 3.746

SAGPool (Lee et al., 2019) CV 0.345 −0.15 0.274 0.482 0.087 0.26 2.749 3.524
FS 0.342 0.2 0.299 0.396 0.298 0.234 2.926 3.58
Table 3
Reproducibility scores for AD/LMCI right hemisphere dataset using different GNN models. AD: Alzheimer’s disease. LMCI: late mild
cognitive impairment. CV: cross-validation. FS: few-shot. v.a: views average. r.c: rank correlation. a.w.i: accumulated weighted
intersection. a.w.c: accumulated weights correlation. s.c: strength correlation. a.r.i: accumulated rank intersection. KL: KL divergence.
L2: L2 distance between vectors of scores.
Method Training v.a r.c a.w.i a.w.c s.c a.r.i KL L2

DiffPool (Ying et al., 2018) CV 0.343 −0.05 0.345 0.109 −0.013 0.281 1.499 2.484
FS 0.363 −0.3 0.297 0.145 −0.257 0.219 1.023 2.39

GAT (Veličković et al., 2017) CV 0.353 0.033 0.265 0.047 −0.049 0.172 2.703 3.672
FS 0.353 −0.2 0.246 0.176 −0.4 0.234 1.961 3.238

GCN (Kipf & Welling, 2016) CV 0.342 0.033 0.364 −0.215 −0.004 0.292 1.986 2.769
FS 0.319 0.1 0.347 −0.59 0.113 0.266 1.777 2.848

g-U-Nets (Gao & Ji, 2019) CV 0.356 0 0.303 0.027 −0.113 0.224 2.017 2.822
FS 0.373 −0.15 0.261 0.161 −0.181 0.234 1.748 2.804

SAGPool (Lee et al., 2019) CV 0.377 0.05 0.298 0.079 −0.001 0.271 3.129 3.944
FS 0.363 0.15 0.28 0.246 0.095 0.266 2.581 3.597
Table 4
Reproducibility scores for ASD/NC left hemisphere dataset using different GNN models. ASD: autism spectrum disorder. NC: normal
control. CV: cross-validation. FS: few-shot. v.a: views average. r.c: rank correlation. a.w.i: accumulated weighted intersection. a.w.c:
accumulated weights correlation. s.c: strength correlation. a.r.i: accumulated rank intersection. KL: KL divergence. L2: L2 distance
between vectors of scores.
Method Training v.a r.c a.w.i a.w.c s.c a.r.i KL L2

DiffPool (Ying et al., 2018) CV 0.375 0.086 0.346 0.415 0.01 0.194 6.901 5.779
FS 0.344 0.029 0.383 0.52 0.002 0.24 4.511 4.622

GAT (Veličković et al., 2017) CV 0.369 0.043 0.277 0.627 0.095 0.208 12.879 8.605
FS 0.38 0.143 0.264 0.63 0.225 0.188 12.574 8.853

GCN (Kipf & Welling, 2016) CV 0.375 −0.029 0.334 0.361 0.028 0.17 5.618 5.381
FS 0.37 0.1 0.375 0.27 0.393 0.219 4.609 4.693

g-U-Nets (Gao & Ji, 2019) CV 0.372 0.214 0.315 0.416 0.216 0.222 8.232 6.456
FS 0.346 0.414 0.339 0.476 0.436 0.24 5.632 5.306

SAGPool (Lee et al., 2019) CV 0.365 −0.048 0.31 0.559 −0.13 0.17 8.239 6.929
FS 0.353 0.086 0.361 0.572 0.043 0.177 4.136 5.384
Table 5
Reproducibility scores for ASD/NC right hemisphere dataset using different GNN models. ASD: autism spectrum disorder. NC: normal
control. CV: cross-validation. FS: few-shot. v.a: views average. r.c: rank correlation. a.w.i: accumulated weighted intersection. a.w.c:
accumulated weights correlation. s.c: strength correlation. a.r.i: accumulated rank intersection. KL: KL divergence. L2: L2 distance
between vectors of scores.
Method Training v.a r.c a.w.i a.w.c s.c a.r.i KL L2

DiffPool (Ying et al., 2018) CV 0.361 0 0.341 0.37 0.151 0.198 6.93 5.788
FS 0.35 0.186 0.377 0.52 0.234 0.177 4.441 4.52

GAT (Veličković et al., 2017) CV 0.355 0.138 0.281 0.624 0.2 0.208 15.025 9.07
FS 0.378 0.529 0.244 0.627 0.464 0.229 15.764 9.645

GCN (Kipf & Welling, 2016) CV 0.372 −0.086 0.337 0.356 −0.078 0.153 6.513 5.777
FS 0.381 0.143 0.372 0.099 0.22 0.156 6.583 5.559

g-U-Nets (Gao & Ji, 2019) CV 0.373 0.005 0.294 0.342 −0.036 0.132 8.931 6.694
FS 0.358 0.386 0.333 0.401 0.147 0.146 5.779 5.142

SAGPool (Lee et al., 2019) CV 0.362 0.057 0.303 0.562 0.045 0.177 7.726 6.666
FS 0.37 0.129 0.321 0.516 0.091 0.188 3.957 5.034
262
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lements if the elements have close strengths but different ranks.
he fourth score is the accumulated rank intersection (a.r.i). It
ccumulates the vectors of biomarkers at different thresholding
ased on the GNN-specific reproducibility matrix. Next, we rank
he views for each GNN. Eventually, we calculate the correlation
etween each pair of GNN resulting ranking vectors. The fifth
core is the KL divergence (KL). We calculate the ranking vectors
f each GNNs as the previous methods. Next, we calculate the
L divergence of the resulting vectors. Unlike previous methods,
his score reflects the dissimilarity between both distributions.
herefore, we are interested in identifying the model having the
mallest score. Finally, we have the L2 distance score (L2) which
s constructed by calculating the L2 distance between pairs of
he resulting vectors. This score reflects the dissimilarity between
NNs. Hence, based on this score the model having the smallest
alue is identified as the most reproducible GNN.
We note that for some metrics such as r.c, s.c., and a.w.c, it

s possible to obtain negative values since these metrics result
n the range [1, 1] . More importantly, if we consider each repro-
ducibility score independently, the model selection conclusions
will be divergent. This also emphasizes the importance of the
two reproducibility scores that we have chosen in our framework.
For instance, if we focus on Table 2, each score identifies a
different GNN as the most reproducible method. However, the
majority of scores indicate that DiffPool is the most reproducible
method which confirms our findings for AD/LMCI left hemisphere
dataset in Fig. 3. For the right hemisphere of the same dataset,
the majority of scores in Table 3 indicates that SAGPool is the
most reproducible model which is the same method selected by
our framework for this dataset as detailed in Fig. 4. In Fig. 5, our
framework selected g-U-Nets as the most reproducible model for
ASD/NC left hemisphere dataset. The same result is confirmed by
the majority of the reproducibility scores illustrated in Table 4.
Finally, the majority of reproducibility scores in Table 5 reflects
that GAT is the most reproducible model which is correlated with
our findings in Fig. 6.

At the time of writing this paper, the reported GNNs con-
struct the state-of-the-art for geometric deep learning models. A
plethora of studies (Gao & Xu, 2020; Wang et al., 2021; Wieder
et al., 2020) has already shown the outperformance of these
GNNs in classification tasks for many datasets. We have carefully
inspected the accuracy and training loss of all presented GNN
models prior to including them in our study for reproducibility
check. As shown in Table 1, the majority of GNN models dis-
played an average classification accuracy higher than 0.5 across
all data views using 5-fold cross-validation — with very minor
exceptions (e.g., g-U-Nets for RH AD/LMCI dataset). Fluctuation
in accuracy is notable across models; however, the main focus of
this paper is model reproducibility rather than model accuracy.

4.3. Limitations and future directions

Although our RG-Select successfully identifies the most repro-
ucible graph neural architecture in a given pool of GNNs for
target multigraph classification task, it has a few limitations.
irst, our model does not identify the most reproducible view-
pecific biomarkers since we conceptualized the reproducibility
aradigm as finding the model that produces the same biomark-
rs across different data views and various perturbation strate-
ies. However, since a graph is regarded as a special instance
f a multigraph where the number of node-to-node edges is
qual to 1, one can directly use the GNN-specific reproducibility
atrix to first identify the most reproducible GNN then the most

eproducible biomarkers. Second, this study only focuses on GNN
eproducibility while somewhat overlooking its learning perfor-
ance in terms of classification accuracy. In our future work, we
263
will investigate the trade-off between GNN reproducibility and
performance in different classification tasks. Finally, although we
used 5 models for the classification, we have only trained our
GNN-based models in a fully supervised manner. As an extension
of our RG-Select, we intend to encompass other families of clas-
sification methods including semi-supervised and weakly deep
learning models.

5. Conclusion

While the majority of classification models have focused on
boosting the accuracy of a given model, in this study, we address
the problem of feature reproducibility. To the best of our knowl-
edge, this is the first work investigating the reproducibility of
GNNs in biomarkers using multigraph brain connectivity datasets.
Our RG-Select demonstrated consistent results against differ-
ent training strategies: cross-validation and a few-shot learning.
Moreover, we evaluated our framework on both small-scale and
large-scale datasets. This work presents a big stride in precision
medicine since it incorporates the reproducibility of neurolog-
ical biomarkers against different perturbations of multi-view
clinical datasets. We believe that reproducibility frameworks
can make major contributions towards unifying clinical inter-
pretation by enhancing the extraction of the set of biomarkers
responsible for brain connectivity alterations in neurologically
disordered populations. One major drawback of our framework
is the computational time consumed to run all the experiments.
To circumvent this issue, we aim, in the foreseeable future, to
predict the influence of different perturbations on the overall
reproducibility of a given model instead of running it on all
datasets.

Code availability

An open-source Python implementation of RG-Select is avail-
able on GitHub at https://github.com/basiralab/RG-Select. The re-
lease includes a tutorial, notes regarding Python packages, which
need to be installed. Information regarding input format can
be also found in the same repository. Input files contain the
learned weights by different GNNs. However, the framework
works with any data respecting the same shape of the weights
vectors extracted from the GNNs.
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Data availability

The data that support the findings of this study are publicly
available from ADNI data (http://adni.loni.usc.edu/). For repro-
ducibility and comparability, the authors will make available
upon request all morphological networks generated based on the
four cortical attributes (maximum principal curvature, cortical
thickness, sulcal depth, and average curvature) for the 77 subjects
(41 AD and 36 LMCI) following the approval by ADNI Consortium.
Our large-scale dataset is also available from the public ABIDE ini-
tiative (http://fcon_1000.projects.nitrc.org/indi/abide/). Following
the approval by the ABIDE initiative, all morphological networks
generated from the six cortical attributes (cortical surface area
and minimum principle area in addition to 4 aforementioned
measures) for the 300 subjects (150 NC and 150 ASD) are also
accessible from the authors upon request.
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